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Abstract

In this paper, we develop the OPTCONRE algorithm, which provides ap-

proximate numerical solutions to optimal control problems with a quadratic

objective function for nonlinear econometric models with rational expecta-

tions. In such models some variables are forward-looking instead of having

the usual ‘causal’ time structure of models with backward-looking or static

expectations. The algorithm, which was programmed in MATLAB, allows

for deterministic and stochastic control, the latter with open-loop and passive

learning information patterns. We use a small quarterly macroeconometric

model for Slovenia to illustrate the applicability of the algorithm. We exam-

ine differences in the optimal policy design between a model alternative with



rational and with static expectations about the inflation rate. This shows

the convergence of the OPTCONRE algorithm and its practical usefulness

for problems of stabilization policy in small-sized macroeconometric models.

Keywords optimal control; rational expectations; econometric modeling;

policy applications
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1 Introduction

Optimal control problems are encountered in many areas of science from

engineering to economics. In particular, there have been many studies on

determining optimal policies for management and economic models. One of

the main questions in economics is: which strategy should be used in order

to influence certain economic variables such as unemployment, inflation or

GDP and to bring them to the desired values. For example, a policy maker

responsible for fiscal policy in a country may determine tax rates and govern-

ment expenditures such as to obtain the most desired (ideal) time paths for

such objective variables as the rate of growth of real GDP, the rate of unem-

ployment or the rate of inflation, among others. Another example for optimal

control from business field is that, when the manager of a firm may want to

maximize profits or minimize costs subject to the restrictions posed by the

firms current production technology or available personnel, etc. To answer

such questions optimal control theory is applied, which has been used inten-

sively for calculating optimal policy paths with macroeconometric models of

the Cowles Commission and related type. Unfortunately it hence did not

incorporate so-called non-causal relations, that is, forward-looking variables

such as rationally expected prices. This is a disadvantage because it is very

important to understand for the dynamic processes what kind of information

and how it is put together to frame an estimate of future conditions. Taking

the forward-looking variables in the system into account makes the solving

techniques more reliable and precise.

Only recently endeavours have started to incorporate rational expecta-
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tions into optimal control techniques. One of the most promising framework

is due to Amman and Kendrick (1999, 2000, 2003), who developed algorithms

for the optimal deterministic and stochastic control of dynamic economic

systems containing rational expectations. But these works are restricted on

linear models, which is not realistic at all for even the simplest econometric

models in use today. Thus, extending their approach to nonlinear econo-

metric models is highly desirable. In the present paper the extension of the

Amman-Kendrick algorithm to nonlinear models is done. We combine the

research results from Amman and Kendrick and the OPTCON algorithm

(Matulka and Neck 1992, Blueschke-Nikolaeva et al. 2012), which solves

optimal control problems with nonlinear dynamic models. As a result an al-

gorithm called OPTCONRE was created which serves to determine approxi-

mately optimal time paths for control variables in the context of a quadratic

objective (cost) function and a nonlinear model with rational expectations.

In this paper, an optimal control problem to be solved approximately

by OPTCONRE algorithm is introduced in Section 2. In Section 3 a brief

description of the OPTCON algorithm is presented. The new OPTCONRE

algorithm is described in Section 4. Section 5 shows the results of an applica-

tion of the OPTCONRE algorithm to a small econometric model for Slovenia.

The application experiment demonstrates that the algorithm works, con-

verges and delivers results in plausible optimal policies. Because the model

has a simple structure, the results are very close to those obtained from a

related model without rational expectations, but it is assumed that this prop-

erty does not hold generally. Section 7 concludes.
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2 The optimal control problem

The OPTCONRE algorithm was designed to determine approximate solu-

tions to optimum control problems with a quadratic objective function (a

loss function to be minimized), which is formulated in quadratic tracking

form and is written as

J = E

[

T
∑

t=1

Lt(xt, ut)

]

, (1)

with

Lt(xt, ut) =
1

2







xt − x̃t

ut − ũt







′

Wt







xt − x̃t

ut − ũt






(2)

and a nonlinear multivariate discrete-time dynamic system under additive

and parameter uncertainties, which has the form

xt = f(xt−1, xt, ut, Ext, θ, zt) + εt, t = 1, ..., T, (3)

where xt is an n-dimensional vector of state variables that describes the

state of the economic system at any point in time t. ut is an m-dimensional

vector of control variables, x̃t ∈ Rn and ũt ∈ Rm are given ‘ideal’ (desired,

target) levels of the state and control variables respectively. T denotes the ter-

minal time period of the finite planning horizon. Wt is an ((n+m)×(n+m))

matrix, specifying the relative weights of the state and control variables in

the objective function. In a frequent special case, Wt is a matrix including a

discount factor α withWt = αt−1W . Wt (orW ) is symmetric. Ext represents

the rational expectations of the state variables. Ext is an n× τ matrix, with
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non-zero rows for variables with rational expectations and τ denoting the

maximum lead in the expectations formation. θ is a p-dimensional vector of

parameters whose values are assumed to be constant but may be unknown to

the decision-maker (parameter uncertainty), zt denotes an l-dimensional vec-

tor of non-controlled exogenous variables, and εt is an n-dimensional vector

of additive disturbances (system error). θ and εt are assumed to be indepen-

dent random vectors with expectations θ̂ and On respectively and covariance

matrices Σθθ and Σεε respectively. f is a vector-valued function, f i(.....), is

the i-th component of f(.....), i = 1, ..., n.

3 The OPTCON algorithm

The OPTCON algorithm allows to calculate numerical solutions to the class

of optimum control problems described in Section 2 without rational expec-

tations. It combines elements of previous algorithms developed by Chow

(1975, 1981), which incorporate nonlinear systems but no multiplicative un-

certainty, and Kendrick (1981), which deal with linear systems and all kinds

of uncertainty. The first version of the algorithm, OPTCON1, which consid-

ers deterministic and stochastic open-loop solutions, is described in detail in

Matulka and Neck (1992). The second version, OPTCON2, allows to take

stochastic passive learning strategies into account as well and is described in

Blueschke-Nikolaeva et al. (2012).

The nonlinearity problem is tackled iteratively in the OPTCON2 algo-

rithm. Following procedure is done repeatedly. First, the nonlinear problem

is linearized, then this linear approximation is solved and the linear solution
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is taken as a new tentative path. If a convergence criterion is fulfilled, the

solution of the last iteration is taken as the optimal solution to the nonlin-

ear problem and the algorithm stops. It should be also mentioned that the

nonlinear system is solved in each step using one of the alternative methods,

namely the Newton-Raphson, Gauss-Seidel, Levenberg-Marquardt or trust

region methods.

4 The OPTCONRE algorithm

In the present work we extend the OPTCON2 algorithm for models with

rational expectations. By doing this we follow the framework presented in

Amman and Kendrick (1999, 2000, 2003). The main difference is that we

deal with nonlinear problems which are described by equation (3):

xt = f(xt−1, xt, ut, Ext, θ, zt) + εt, t = 1, ..., T,

where Ext (Et−1xt+j, j = 0, ..., τ−1) is the matrix of expected state variables

for time periods t + j expected at time t − 1. Ext is an n × τ matrix,

but only rows representing forward-looking expectations variables (variables

with rational expectations) are non-zero. τ denotes the maximum lead in

the expectations formation (to be more precise, the maximum lead is τ -1 as

shown in equation (4)). We use the same iterative structure to approximate

the nonlinear problem as in previous versions of OPTCON, which means that

we repeatedly linearize the system, solve it and take the current solution
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as the new tentative path for the nonlinear problem. By linearizing1 we

transform the autonomous nonlinear system (3) to the following time-varying

linear form:

xt = Atxt−1 + Btut + Ctzt +
τ−1
∑

j=0

DjtEt−1xt+j + φt + ξt. (4)

Using Sims’ method (Sims (2002)) we transform (4) in the form

Γ0tx̃t = Γ1tx̃t−1 + Γ2tut + Γ3tzt + Γ4tφt + Γ5ξt, (5)

where

Γ0t =

























I −D1t −D2t · · · −Dτ−2t −Dτ−1t

I 0 · · · 0 0

0 I · · · 0 0

...
. . . 0 0

0 · · · I 0

























, Γ1t =



















At 0 · · · 0

0 I · · · 0

0 0 · · · 0

...
. . . I



















,

Γ2t =



















Bt

0

...

0



















, Γ3t =



















Ct

0

...

0



















, Γ4t = Γ5t =



















I

0

...

0



















1To initialize the linearization we need tentative paths for the expected state variables.
In that case the given values of the state variables in the previous time period are taken
as the tentative paths.
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and the augmented state vector x̃t =

























xt

Ext+1

Ext+2

...

Ext+τ−1

























.

We apply the QZ decomposition to the system matrices Γ0t and Γ1t:

Λt = QtΓ0tZt,

Ωt = QtΓ1tZt,
(6)

where Λ and Ω are upper triangular matrices and ∀i ωii/λii are the generalized

eigenvalues.

This QZ decomposition allows us to obtain the generalized eigenvalues

and to transform equation (5) to the form:

Λωt = Ω1ωt−1 +QΓ2ut +QΓ3zt +QΓ4φt +QΓ5ξt. (7)

Using the triangular structure of Λ and Ω, equation (7) can be rewritten

as:






Λ11 Λ12

0 Λ22













ω1,t

ω2,t






=







Ω11 Ω12

0 Ω22













ω1,t−1

ω2,t−1






+







Q1

Q2






Γ2ut +







Q1

Q2






Γ3zt +







Q1

Q2






Γ4φt +







Q1

Q2






Γ5ξt

(8)

with unstable eigenvalues in the lower right corner, i.e. in the matrices Λ22

and Ω22. This allows us to derive ω2,t as a function of future instruments and
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exogenous variables:

γt = ω2,t = −

∞
∑

j=0

M̃tjΩ
−1

22t+jQ2t+j(Γ2t+jut+j + Γ3t+jzt+j + Γ4t+jφt+j + Γ5t+jξt+j),

(9)

where M̃tj =
∏j−1

i=0
(Ω−1

22t+iΛ22t+i) for j > 0 and M̃tj = I for j = 0.

Inserting equation (9) into equation (7) gives us:

Λ̃ωt = Ω̃ωt−1 + Γ̃2ut + Γ̃3zt + Γ̃4φt + Γ̃5ξt + γ̃t (10)

with Λ̃ =







Λ11 Λ12

0 I






, Ω̃ =







Ω11 Ω12

0 0






, γ̃t =







0

γt






, Γ̃2 =







Q1

0






Γ2,

Γ̃3 =







Q1

0






Γ3, Γ̃4 =







Q1

0






Γ4, Γ̃5 =







Q1

0






Γ5.

Using x̃t = Z ′ωt we rewrite equation (10) as

x̃t = Ãtx̃t−1 + B̃tut + C̃tz̃t + φ̃t + ξ̃t, (11)

where Ãt = ZtΛ̃
−1
t Ω̃tZ

′

t , B̃t = ZtΛ̃
−1
t Γ̃2t, C̃t = [ZtΛ̃

−1
t Γ̃3t ZtΛ̃

−1
t ],

z̃t =







zt

γ̃t






, φ̃t = ZtΛ̃

−1
t Γ̃4tφt, ξ̃t = ZtΛ̃

−1
t Γ̃5tξt and Λ̃−1 =







Λ−1

11 −Λ−1

11 Λ12

0 I






.

Then we can apply the LQ optimal control framework from OPTCON to

equation (11) using Bellman’s dynamic programming.2

2We skip the detailed description of these equations which combine those used in OPT-
CON2 (see Blueschke-Nikolaeva et al. (2012)) and the ones described in Amman and
Kendrick (2003).
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5 An application

OPTCONRE, the extended version of the OPTCON2 algorithm which takes

rational expectations into account was implemented in MATLAB. In order to

test its convergence3, a relatively simple and small macroeconometric model

for Slovenia was used. The details of this model are presented in Section 5.1.

Section 5.2 gives the optimization results for this macroeconometric model.

5.1 The SLOVNLRE model

In this work we extend the small nonlinear macroeconometric model of the

Slovenian economy, called SLOVNL, which was presented in Blueschke-Nikolaeva

et al. (2012), by adding rational expectations for one of the state variables.

The model is estimated using the quarterly data for the time periods 1995:1

to 2006:4. The start period for the optimization is 2004:1 and the end period

is 2006:4 (12 periods).

Variables used in SLOVNL

Endogenous (state) variables :

3In a first implementation test, we successfully reproduced the results of Amman and
Kendrick (2003) for a very simple one state, one control linear model.
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x[1] : CR real private consumption

x[2] : INV R real investment

x[3] : IMPR real imports of goods and services

x[4] : STIRLN short term interest rate

x[5] : GDPR real gross domestic product

x[6] : V R real total aggregate demand

x[7] : PV general price level

x[8] : Pi4 rate of inflation

Control variables:

u[1] TaxRate net tax rate

u[2] GR real public consumption

u[3] M3N money stock, nominal

Exogenous non-controlled variables:

z[1] EXR real exports of goods and services

z[2] IMPDEF import price level

z[3] GDPDEF domestic price level

z[4] SITEUR nominal exchange rate SIT/EUR

SLOVNL model equations :

The first four equations are estimated by FIML, the last four equations are identities.4

CRt = 240.9398 + 0.740333 CRt−1 + 0.111727 GDPRt (1− TaxRatet

100 )

(189.7449) (0.1115) (0.0330)

4Standard deviations are given in brackets.
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− 1.007353 (STIRLNt − Pi4t) − 4.773533 Pi4t

(2.5848) (2.4966)

INV Rt = 75.41731 + 0.932211 INV Rt−1 + 0.264523 (V Rt − V Rt−1)

(176.8549) (0.1423) (0.0924)

− 0.455511 (STIRLNt − Pi4t) − 2.981241 Pi4t

(6.9044) (3.1277)

IMPRt = IMPRt−1 + 0.826449 (V Rt − V Rt−1) − 38.14954 SITEURt

(0.0724) (18.9336)

STIRLNt = 0.811606 STIRLNt−1 − 0.000877 (M3N)t
PVt

· 100

(0.1375) (0.0008)

+ 0.002746 GDPRt

(0.0026)

GDPRt = CRt + INV Rt + GRt + EXRt − IMPRt

V Rt = GDPRt + IMPRt

PVt = GDPRt

V Rt

·GDPDEFt + IMPRt

V Rt

· IMPDEFt

Pi4t = PVt−PVt−4

PVt−4

· 100

In the present paper we replace the current values of the inflation variable

Pi4 in the first two equations (which can be interpreted as static expecta-

tions of next-period’s inflation rate) by the expected values which are formed

rationally. The adjusted equations for consumption and investment, which
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are used in the SLOVNLRE model, looks then as follows:

CR′

t = 240.9398 + 0.740333 CRt−1 + 0.111727 GDPRt (1− TaxRatet

100 )

(189.7449) (0.1115) (0.0330)

− 1.007353 (STIRLNt −Pi4
e

t
) − 4.773533 Pi4

e

t

(2.5848) (2.4966)

INV R′

t = 75.41731 + 0.932211 INV Rt−1 + 0.264523 (V Rt − V Rt−1)

(176.8549) (0.1423) (0.0924)

− 0.455511 (STIRLNt −Pi4
e

t
) − 2.981241 Pi4

e

t

(6.9044) (3.1277)

This means that the Ex matrix as stated in equation (4) contains only one

non-zero row, namely the eighth row which corresponds to the inflation vari-

able.

The objective function penalizes deviations of objective variables from

their target values according to equations (1) and (2):

J = E

[

T
∑

t=1

Lt(xt, ut)

]

,

with

Lt(xt, ut) =
1

2







xt − x̃t

ut − ũt







′

Wt







xt − x̃t

ut − ũt






.

The ‘ideal’ values of the state and control variables (x̃t and ũt respectively)

and the corresponding weights are chosen in the same way as in Blueschke-

Nikolaeva et al. (2012).

Next, the OPTCON2 algorithm is applied to the SLOVNL model and
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the OPTCONRE algorithm is applied to the SLOVNLRE model in order to

determine approximately optimal fiscal and monetary policies. By running

this experiment we expect to get two different insights. First, we want to

check the applicability and the convergence of the OPTCONRE algorithm

for a model with rational expectations under a nonlinear optimal control

problem. Second, we want to figure out the impact of introducing rational

expectations on optimal policies. Using two sister models, SLOVNL and

SLOVNLRE, allows us to track the output differences as a result of the

rational expectations.

5.2 Results

In this subsection we present the optimal control (and non-controlled simu-

lation) results of applying the OPTCON2 algorithm to the SLOVNL model

and the OPTCONRE algorithm to the SLOVNLRE model. In the following

we present graphical results for three control variables, TaxRate,GR,M3N ,

and five state variables, CR, INV R, STIRLN,GDPR,P i4. Each of the fig-

ures contains four different trajectories:

* optcon2 : shows the results of the OPTCON2 algorithm applied to the

SLOVNL model

* optcon2 re: shows the results of the OPTCONRE algorithm applied

to the SLOVNLRE model

* simulat : shows the uncontrolled simulation results
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* target : gives the target (’ideal’) values

The following figures 1 - 3 show the results of the control variables.
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Figure 1: net tax rate (TaxRate)
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Figure 2: real public consumption (GR)

The differences between the experiments with and without rational expec-

tations are extremely small. Both time paths under optcon2 and optcon2 re

nearly coincide. We can only observe very small differences for the controls
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Figure 3: money stock, nominal (M3N)

TaxRate and GR. In both cases, the solution for the model with rational

expectations suggests to run a slightly more restrictive fiscal policy.

Figures 4 - 8 show the results for the state variables.
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Figure 4: real private consumption (CR)

Also for the state variables the graphical differences between the exper-

iments with and without rational expectations are very small. This means

that for the nonlinear problem under consideration, the introduction of ra-
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Figure 5: real investment (INVR)
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Figure 6: short term interest rate (STIRLN)

tional expectations for the inflation variable has nearly no effect. This obser-

vation is supported by looking at the objective values. The initial objective

value which is calculated from the non-controlled simulation (using histor-

ical values of the exogenous variables) is 2,759,743. The objective value

of the OPTCON2 solution is 904,650and the objective value of the OPT-
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Figure 7: real gross domestic product (GDPR)
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Figure 8: rate of inflation (Pi4)

CONRE solution is 906,702 which is very close to the experiment without

rational expectations. One reason for this result is the fact that in the sim-

ple econometric model used, the price level and hence the inflation rate are

mostly determined by exogenous non-controlled variables and do not depend

heavily on variables affected by the controls. This implies that a rational
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policy-maker will not gain much by sophisticated techniques of estimating

future inflation under this model and cannot improve upon using the current

inflation rate as predictor for next-period’s inflation rate.

6 Conclusion

In this paper, we have presented the OPTCONRE algorithm, which deter-

mines approximately optimal trajectories of policy instruments in dynamic

optimization problems with a quadratic intertemporal objective function un-

der a nonlinear discrete-time economic model where some variables includes

rational expectations. The algorithm can be regarded as an extension of

the OPTCON / OPTCON2 algorithm to non-causal dynamic systems or

as an extension of Amman’s and Kendrick’s algorithm for rational expec-

tations models to models with nonlinearities. Applying OPTCONRE to a

small and simple econometric model of the Slovenian economy, we showed

that the algorithm and its implementation in MATLAB works, i.e. con-

verges and yields plausible results. These results (in the special case of a

linear model) coincide with results obtained by Amman and Kendrick. In

the particular model used, we found that the introduction of rational instead

of static expectations did not change substantially the results obtained for

a related optimization problem with the analogous model employing static

expectations. Further research will have to show how the introduction of

rational expectations changes optimal policies in more sophisticated and re-

alistic models. In any case, the OPTCONRE algorithm can be regarded as a

useful tool to be employed for a large class of econometric and related models
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such as DSGE models which routinely include rational expectations of some

or all endogenous variables.
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